

Adaptive Shapley:

Using Explainable AI with Large Datasets to Quantify the

Impact of Arbitrary Error Sources

2024 / 03 / 17

Birk Magnussen

Production Difficulties

Production Difficulties

Production Difficulties

Production Difficulties

Goal: Understand influence of quality criteria on neural network prediction accuracy

An Introduction

Given a **coalitional** game

Shapley values represent the contribution of one player to a game

An Introduction

Shapley values represent the contribution of one player to a game

Player	Game
?	?

Player	Game
?	?

Player	Game
detectors	?

Players

Player 1 Player 2 Player 3 Player 4

Players

2024 / 03 / 17 Birk Magnussen 6/15

Game Score

Player	Game
detectors	?

Game Score

Player	Game
detectors	prediction error

Game Score

prediction error = |ground truth - prediction|

Game Score

prediction error =
$$|$$
ground truth – prediction

Intelligent Embedded Systems

Shapley Values

Game Score

prediction error =
$$|\text{ground truth} - \text{prediction}|$$

 \uparrow
approximation
from omitting
detector

Player	Game
detectors	prediction error

Shapley values represent the contribution of one detector to the measurement error

Player	Game
detectors	prediction error

Shapley values represent the contribution of one detector to the measurement error

 $\rightarrow~$ Calculate Shapley values for a large dataset and average for each sensor

Error Magnitude

2024 / 03 / 17 Birk Magnussen 10/15

Leakage Current Classifier Heatmap

Leakage Current Classifier Histogram

leakage current classifier

Detector Scale

detector brightness scale factor

Applying Shapley Values

Applying Shapley Values

Conclusion

Conclusion

Conclusion

