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Motivation

2

 Increasing number and types of cores in shared memory 
multicore architectures

◼ Need for multi target-architecture parallelizing compiler

◼ Need for little tuning required per-target configuration

 OSCAR automatic parallelizing compiler

◼ Source-to-source compiler
 Generated source can be compiled by both OpenMP and sequential compilers 

for different architectures

◼ Multigrain parallelization; coarse-grain task parallelism, loop-
level parallelism, statement-level parallelism
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The OSCAR Compiler – Overview
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To improve effective performance, cost-
performance and software productivity
and reduce power

Multigrain Parallelization (LCPC1991,2001,04)

coarse-grain parallelism among loops and subroutines 
(2000 on SMP), near fine grain parallelism among 
statements (1992) in addition to loop parallelism

Data Localization 
Automatic data management for distributed shared 
memory, cache and local memory
(Local Memory 1995, 2016 on RP2,Cache2001,03)

Software Coherent Control (2017)

Data Transfer Overlapping (2016 partially)

Data transfer overlapping using Data Transfer 
Controllers (DMAs)

Power Reduction 
(2005 for Multicore, 2011 Multi-processes, 2013 on ARM)

Reduction of consumed power by compiler control 
DVFS and Power gating with hardware supports.
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The OSCAR Compiler – Multigrain parallelism
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Program
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 macro-tasks in multigrain parallelism

◼ BA: Block of Assignments

◼ RB: Repetition Block

◼ SB: Subroutine Block



The OSCAR Compiler – Macro-task generation
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 Macro-Flow Graph (left)

◼ : data dependency

◼ : control flow

◼ : branch

 Macro-Task Graph (right)

◼ : data dependency

◼ : control dependency

◼ : branch

◼ : original control flow

◼ : AND

◼ : OR

 Earliest-execution 
conditions

◼ Completion of 
directly data 
dependent tasks

◼ Completion of tasks 
so that control flow 
passes task 
guaranteed



The OSCAR Compiler – Loop aligned decomposition
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 loop-aligned decomposition

DO I=69,101DO I=67,68DO I=36,66DO I=34,35DO I=1,33

DO I=1,33

DO I=2,34

DO I=68,100

DO I=67,67

DO I=35,66

DO I=34,34

DO I=68,100DO I=35,67

LR CAR CARLR LR

C RB2(Doseq)

DO I=1,100

B(I)=B(I-1)

+A(I)+A(I+1)

ENDDO

C RB1(Doall)

DO I=1,101

A(I)=2*I

ENDDO

C RB3(Doall)

DO I=2,100

C(I)=B(I)+B(I-1)

ENDDO



The OSCAR Compiler – Compile flow
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Investigated Benchmarks
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 NAS parallel benchmark suite

◼ BT: Block Tri-diagonal solver

◼ CG: Conjugate Gradient computation

◼ SP: Scalar Penta-diagonal solver

 SPEC2000

◼ art: Image recognition / Neural networks

◼ equake: Seismic wave propagation simulation

◼ swim: Shallow water modelling - Fortran 77

 MediaBench II

◼ MPEG2 encoding
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Intel Xeon E5-2650v4 – Statistics
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 x86-64 based Architecture

 12 Cores

 2.2 GHz – 2.9 GHz

 30 MiB shared L3 cache
◼ L3 Cache: Shared by all cores
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Intel Xeon E5-2650v4 – Benchmark results
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 speedup to sequential version (higher is better)

 gcc as backend

 swim shows superlinear speedup and 1 core speedup
◼ seq.: 58.1 s, 1 core OSCAR: 33.2 s, 4 core OSCAR: 10.5 s



Intel Xeon E5-2650v4 – swim cache statistics
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Program L1 loads L1 load misses L3 loads L3 load misses

Sequential 2.3 ∙ 1011 1.2 ∙ 1011 5.7 ∙ 1010 1.1 ∙ 1010

OSCAR 1 core 2.3 ∙ 1011 6.5 ∙ 1010 1.5 ∙ 1010 8.2 ∙ 109

OSCAR 2 cores 2.2 ∙ 1011 6.5 ∙ 1010 1.5 ∙ 1010 7.1 ∙ 109

OSCAR 4 cores 2.2 ∙ 1011 6.5 ∙ 1010 1.4 ∙ 1010 6.1 ∙ 109

OSCAR 8 cores 2.2 ∙ 1011 6.5 ∙ 1010 1.3 ∙ 1010 4.1 ∙ 109

 swim benchmark cache statistics

 reduction in L3 loads and misses

◼ cause for speedup in comparison to sequential code



 speedup to sequential version (higher is better)

 OSCAR can be used with different backend compilers
◼ slightly lower relative speedups are due to better sequential performance

Intel Xeon E5-2650v4 – ICC backend compiler
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AMD EPYC 7702P – Statistics
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 x86-64 based Architecture

 64 Cores

 2.0 GHz – 3.35 GHz

 16 MiB L3 cache per 4 core cluster

◼ shared within the cluster



AMD EPYC 7702P – Benchmark results
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 speedup to sequential version (higher is better)

 gcc as backend

 CG and swim show superlinear speedup
◼ CG: seq.: 0.86 s, 8 core OSCAR: 0.09 s



AMD EPYC 7702P – CG macrotask graph
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 CG shows superlinear speedup

 macro-task graph consists of sequence of 
parallelized loops

◼ good target for loop-aligned decomposition



NVIDIA Carmel ARMv8.2 – Statistics
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 Arm v8.2 based Architecture

 6 Cores

 1.4 GHz

 4 MiB shared L3 cache
◼ L3 Cache: Shared across all cores
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NVIDIA Carmel ARMv8.2 – Benchmark results
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 speedup to sequential version (higher is better)

 gcc as backend

 overall good speedup is observed
◼ equake: seq.: 19.0 s, 4 core OSCAR: 7.18 s



SiFive Freedom U740 – Statistics
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 RISC-V based Architecture

 4 Cores

 1.2 GHz

 2 MiB shared L2 cache
◼ L2 Cache: Shared across all cores
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SiFive Freedom U740 – Benchmark results
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 speedup to sequential version (higher is better)

 gcc as backend

 overall good speedup is observed, swim superlinear
◼ BT: seq.: 2041 s, 4 core OSCAR: 551 s



Conclusion
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 The generated code shows high-performance on different 
modern architectures

◼ Intel Xeon E5-2650v4 – swim – 8 cores: speedup 7.16 

◼ AMD EPYC 7702P – CG – 8 cores: speedup 9.5

◼ NVIDIA Carmel – equake – 4 cores: speedup 2.64 

◼ SiFive Freedom U740 – mpeg2 – 4 cores: speedup 3.77

 This data shows that the OSCAR compiler can achieve good
performance on various processor cores such as Intel x86, 
AMD x86, Arm and RISC-V

 Superlinear speedup was observed due to last level cache
optimization with the loop-aligned decomposition

 OSCAR compiler can achieve this performance without any 
extensive per-system tuning


