LCPC 2021

Performance Evaluation of OSCAR Multi-target
Automatic Parallelizing Compiler on Intel,
AMD, Arm and RISC-V Multicores

Birk Martin Magnussen, Tohma Kawasumi, Hiroki
Mikami, Keiji Kimura, Hironori Kasahara

Department of Computer Science and Engineering
Waseda University

2021/10/14 1

Motivation

O Increasing number and types of cores in shared memory
multicore architectures

m Need for multi target-architecture parallelizing compiler
m Need for little tuning required per-target configuration

0 OSCAR automatic parallelizing compiler

m Source-to-source compiler

o Generated source can be compiled by both OpenMP and sequential compilers
for different architectures

m Multigrain parallelization; coarse-grain task parallelism, loop-
level parallelism, statement-level parallelism

2021/10/14 p

The OSCAR Compiler — Overview

To improve effective performance, cost-
performance and software productivity
and reduce power

Sequential LOOP | SB BB

CPUO GPU1 CPU2 GPU3 DRPO

CORE | DTU | CORE | DTU CORE‘DTU CORE‘DTU CORE | DTU

Multigrain Parallelization (crc1991,2001,04)
coarse-grain parallelism among loops and subroutines
(2000 on SMP), near fine grain parallelism among
statements (1992) in addition to loop parallelism

Data Localization

Automatic data management for distributed shared

memory, cache and local memory
(Local Memory 1995, 2016 on RP2,Cache2001,03)

Software Coherent Control (2017)
Data Transfer Overlapping (2016 partially) mimonmone TR B

Control - (Frequency,

vt i
MTGT ey 18

wTi-2 2

EREE

MT1-3

1)
[REoAzR]
[fso] |
0D
MTI-4
SED
D

MTG2 yrz-1 [- 150 IMTG)

SEND
MT2-2 (20

MT3-3

MT2-5

1) T35

o] MT37 3-8

i

(Voltage : 1.4V) Resume Standby:

Data transfer overlapping using Data Transfer : — I
ContrO”ers (DMAS) .] 1.0V)

Power Reduction
(2005 for Multicore, 2011 Multi-processes, 2013 on ARM)

Reduction of consumed power by compiler control = 1
DVFS and Power gating with hardware supports. ” 38.3% Poweér Reduction

2021/10/14

The OSCAR Compiler — Multigrain parallelism

O macro-tasks in multigrain parallelism
m BA: Block of Assignments
m RB: Repetition Block
m SB: Subroutine Block

i — BA ——i— Near fine grain parallelization i g‘;‘
| | I SB
! Y Loop level parallelization —BA | BA
Program -—— RB % Near fine grain of loop body —RB —— §§
! | Coarse grain SB L BA
I i parallelization —BA ! RB
I I . I SB
- SB —— Coarse grain RB — BA
parallelization _,._E RB
: : —SB I SB
[Total .., N Vo]
st nd rd
System ! 1s%. Layer ! 2nd, Layer ! 3'd. Layer

2021/10/14 4

The OSCAR Compiler — Macro-task generation

O Earliest-execution
conditions

m Completion of
directly data
dependent tasks

= Completion of tasks
so that control flow
passes task
guaranteed

Macro-Flow Graph (left)
m — : data dependency
m ----: control flow
® o : branch

Macro-Task Graph (right)
m — : data dependency
----: control dependency
o : branch

— : original control flow
) : AND
v OR

2021/10/14 5

The OSCAR Compiler — Loop alighed decomposition

O loop-aligned decomposition

2021/10/14 6

C RB1(Doall)
DO I=1,101
A(l)=2%
ENDDO

(

LR

~

4)

CAR

-

LR

\

4)

CAR

-

LR

~

DO I1=1,33

DO 1=34,35

DO 1=36,66

DO 1=67,68

DO 1=69,101

|

C RB2(Doseq)
DO 1=1,100
B(l)=B(I-1)
+A(l)+A(I+1)
ENDDO

DO I=1,33

C RB3(Doall)
DO 1=2,100
C(1)=B(1)+B(1-1)
ENDDO

DO [=34,34

DO 1=2,34

Z\

\-

J

DO 1=35,66

-

DO 1=67,67

DO 1=35,67

g

DO 1=68,100

— |

o

J

. J

DO 1=68,100

\-

/

The OSCAR Compiler — Compile flow

C Fortran77

(Front-End)
v

Intermediate representation

v

Middle-Path
Multigrain parallelization, optimizations, etc.

Y

Intermediate representation
12
(BackEnd)
2
OSCARAPI 2.1 Code

[O&ZARAPI-AnaIyzer]«»[OpenMP Compiler]
Paralleli+zed C
[SequentiaT Compiler]

2021/10/14 7

Investigated Benchmarks

O NAS parallel benchmark suite
m BT: Block Tri-diagonal solver
m CG: Conjugate Gradient computation
m SP: Scalar Penta-diagonal solver
O SPEC2000
m art: Image recognition / Neural networks
m equake: Seismic wave propagation simulation
= swim: Shallow water modelling - Fortran 77
0 MediaBench II
= MPEG2 encoding

2021/10/14 8

Intel Xeon E5-2650v4 - Statistics

O x86-64 based Architecture
0 12 Cores
0 2.2 GHz - 2.9 GHz

0 30 MiB shared L3 cache
m L3 Cache: Shared by all cores

2021/10/14 9

Intel Xeon E5-2650v4 — Benchmark results

O speedup to sequential version (higher is better)
0 gcc as backend

- 1Cre ™—11 e]
2 Cores mam
4 Cores mmmm
"""""""""""""""""""""" 8 Cores

Speedup to Sequential
O =~ N W ~ 0O 0 N

BT CG *F art equake MPEG2 swim

O swim shows superlinear speedup and 1 core speedup
m seq.: 58.1s, 1 core OSCAR: 33.2 s, 4 core OSCAR: 10.5 s

2021/10/14

Intel Xeon E5-2650v4 — swim cache statistics

O swim benchmark cache statistics

L1 loads L1 load misses | L3 loads L3 load misses

Sequential - 10 - 101 - 1010 1.1-10%°
OSCAR 1 core 2.3-1011 6.5 - 1010 1.5-1010 8.2-10°
OSCAR 2 cores 2.2-1011 6.5 - 1010 1.5-1010 7.1-10°
OSCAR 4 cores 2.2-1011 6.5 - 1010 1.4.1010 6.1-10°
OSCAR 8 cores 2.2-1011 6.5 - 1010 1.3 -1010 41 -10°

O reduction in L3 loads and misses
m cause for speedup in comparison to sequential code

2021/10/14

Intel Xeon E5-2650v4 - ICC backend compiler

O speedup to sequential version (higher is better)

|ICC Auto-Parallelization (8 Cores) I
OSCAR Parallelization, ICC Backend8 Cores)]

Speedup to Sequential
O =~ N W d 00 O

BT CG P art equake MPEG2 swim

0 OSCAR can be used with different backend compilers
m slightly lower relative speedups are due to better sequential performance

2021/10/14

AMD EPYC 7702P — Statistics

O x86-64 based Architecture
O 64 Cores
O 2.0 GHz - 3.35 GHz

00 16 MiB L3 cache per 4 core cluster
m shared within the cluster

2021/10/14

AMD EPYC 7702P - Benchmark results

O speedup to sequential version (higher is better)
0 gcc as backend

10
9

Soeedup to Sequential

O -=-2DMNWPAOOIO NO

CG *F art equake MPEG2 swim

O CG and swim show superlinear speedup
m CG: seq.: 0.86 s, 8 core OSCAR: 0.09 s

2021/10/14

AMD EPYC 7702P - CG macrotask graph =7

I e
\
0 CG shows superlinear speedup doallfosump
0 macro-task graph consists of sequence of
parallelized loops [Bbg]

m good target for loop-aligned decomposition

doall10

2021/10/14

NVIDIA Carmel ARMvS8.2 - Statistics

0O Arm v8.2 based Architecture
O 6 Cores

O 1.4 GHz

O 4 MiB shared L3 cache

m L3 Cache: Shared across all cores

2021/10/14

NVIDIA Carmel ARMvS8.2 - Benchmark results

O speedup to sequential version (higher is better)
0 gcc as backend

Soeedup to Sequential

3
2.5
2
1.5
1
0.5
0

1 Core

L 1
2 Cores mmam
4 Cores wmmmmm

BT CG

P

art

O overall good speedup is observed
m equake: seq.: 19.0 s, 4 core OSCAR: 7.18 s

2021/10/14

equake MPEG2 swim

SiFive Freedom U740 - Statistics

0 RISC-V based Architecture
0 4 Cores

0 1.2 GHz

O 2 MiB shared L2 cache

m L2 Cache: Shared across all cores

2021/10/14

SiFive Freedom U740 - Benchmark results

O speedup to sequential version (higher is better)
0 gcc as backend

Speedup to Sequential

4.5
4
3.5
3
2.5
2
1.5
1
0.5
0

BT CG P at equake MPEGR2 swim

O overall good speedup is observed, swim superlinear
m BT: seq.: 2041 s, 4 core OSCAR: 551 s

2021/10/14

Conclusion

O The generated code shows high-performance on different
modern architectures

m Intel Xeon E5-2650v4 - swim — 8 cores: speedup 7.16
m AMD EPYC 7702P - CG - 8 cores: speedup 9.5
= NVIDIA Carmel - equake - 4 cores: speedup 2.64
m SiFive Freedom U740 - mpeg2 — 4 cores: speedup 3.77
0 This data shows that the OSCAR compiler can achieve good

performance on various processor cores such as Intel x86,
AMD x86, Arm and RISC-V

0 Superlinear speedup was observed due to last level cache
optimization with the loop-aligned decomposition

0 OSCAR compiler can achieve this performance without any
extensive per-system tuning

2021/10/14

