
Performance Evaluation of OSCAR Multi-target
Automatic Parallelizing Compiler on Intel,

AMD, Arm and RISC-V Multicores

Birk Martin Magnussen, Tohma Kawasumi, Hiroki
Mikami, Keiji Kimura, Hironori Kasahara

Department of Computer Science and Engineering
Waseda University

12021/10/14

LCPC 2021

Motivation

2

 Increasing number and types of cores in shared memory
multicore architectures

◼ Need for multi target-architecture parallelizing compiler

◼ Need for little tuning required per-target configuration

 OSCAR automatic parallelizing compiler

◼ Source-to-source compiler
 Generated source can be compiled by both OpenMP and sequential compilers

for different architectures

◼ Multigrain parallelization; coarse-grain task parallelism, loop-
level parallelism, statement-level parallelism

2021/10/14

The OSCAR Compiler – Overview

32021/10/14

To improve effective performance, cost-
performance and software productivity
and reduce power

Multigrain Parallelization (LCPC1991,2001,04)

coarse-grain parallelism among loops and subroutines
(2000 on SMP), near fine grain parallelism among
statements (1992) in addition to loop parallelism

Data Localization
Automatic data management for distributed shared
memory, cache and local memory
(Local Memory 1995, 2016 on RP2,Cache2001,03)

Software Coherent Control (2017)

Data Transfer Overlapping (2016 partially)

Data transfer overlapping using Data Transfer
Controllers (DMAs)

Power Reduction
(2005 for Multicore, 2011 Multi-processes, 2013 on ARM)

Reduction of consumed power by compiler control
DVFS and Power gating with hardware supports.

CPU0

CORE DTU

CPU1

CORE DTU

CPU2

CORE DTU

CPU3

CORE DTU

DRP0

CORE DTU

MT1-1 MT1-2

LOAD LOAD
LOAD LOAD

MT1-3 MT1-4

SEND SEND

MT2-1

SEND

LOAD

SEND

MT2-2

LOAD

MT2-3

SEND

OFF
OFF

OFF

MT3-1

LOAD

MT2-4MT3-2
MT3-3

SEND

LOAD

LOAD

LOAD
LOAD

MT2-5

LOAD

MT2-6

SEND

LOAD

MT2-7

SEND

SENDLOAD

OFF

SEND

MT3-5

LOAD
SEND

LOADLOAD

LOAD

MT3-8

SEND

OFFMT3-7

LOAD

MT2-8

SEND
SEND

LOAD

OFF
STORE

STORE
STORE

STORE

T
IM

E

 MTG1

 MTG2 MTG3

MT3-4 MT3-6

The OSCAR Compiler – Multigrain parallelism

42021/10/14

Program

BA

RB

SB

Near fine grain parallelization

Loop level parallelization

Near fine grain of loop body

Coarse grain

parallelization

Coarse grain

parallelization

BA

RB

SB

BA

RB

SB

BA
RB
SB

BA
RB
SB

BA
RB
SB

BA
RB
SB

1st. Layer 2nd. Layer 3rd. Layer
Total

System

 macro-tasks in multigrain parallelism

◼ BA: Block of Assignments

◼ RB: Repetition Block

◼ SB: Subroutine Block

The OSCAR Compiler – Macro-task generation

52021/10/14

 Macro-Flow Graph (left)

◼ : data dependency

◼ : control flow

◼ : branch

 Macro-Task Graph (right)

◼ : data dependency

◼ : control dependency

◼ : branch

◼ : original control flow

◼ : AND

◼ : OR

 Earliest-execution
conditions

◼ Completion of
directly data
dependent tasks

◼ Completion of tasks
so that control flow
passes task
guaranteed

The OSCAR Compiler – Loop aligned decomposition

62021/10/14

 loop-aligned decomposition

DO I=69,101DO I=67,68DO I=36,66DO I=34,35DO I=1,33

DO I=1,33

DO I=2,34

DO I=68,100

DO I=67,67

DO I=35,66

DO I=34,34

DO I=68,100DO I=35,67

LR CAR CARLR LR

C RB2(Doseq)

DO I=1,100

B(I)=B(I-1)

+A(I)+A(I+1)

ENDDO

C RB1(Doall)

DO I=1,101

A(I)=2*I

ENDDO

C RB3(Doall)

DO I=2,100

C(I)=B(I)+B(I-1)

ENDDO

The OSCAR Compiler – Compile flow

72021/10/14

Investigated Benchmarks

8

 NAS parallel benchmark suite

◼ BT: Block Tri-diagonal solver

◼ CG: Conjugate Gradient computation

◼ SP: Scalar Penta-diagonal solver

 SPEC2000

◼ art: Image recognition / Neural networks

◼ equake: Seismic wave propagation simulation

◼ swim: Shallow water modelling - Fortran 77

 MediaBench II

◼ MPEG2 encoding

2021/10/14

Intel Xeon E5-2650v4 – Statistics

9

 x86-64 based Architecture

 12 Cores

 2.2 GHz – 2.9 GHz

 30 MiB shared L3 cache
◼ L3 Cache: Shared by all cores

2021/10/14

Intel Xeon E5-2650v4 – Benchmark results

102021/10/14

 speedup to sequential version (higher is better)

 gcc as backend

 swim shows superlinear speedup and 1 core speedup
◼ seq.: 58.1 s, 1 core OSCAR: 33.2 s, 4 core OSCAR: 10.5 s

Intel Xeon E5-2650v4 – swim cache statistics

112021/10/14

Program L1 loads L1 load misses L3 loads L3 load misses

Sequential 2.3 ∙ 1011 1.2 ∙ 1011 5.7 ∙ 1010 1.1 ∙ 1010

OSCAR 1 core 2.3 ∙ 1011 6.5 ∙ 1010 1.5 ∙ 1010 8.2 ∙ 109

OSCAR 2 cores 2.2 ∙ 1011 6.5 ∙ 1010 1.5 ∙ 1010 7.1 ∙ 109

OSCAR 4 cores 2.2 ∙ 1011 6.5 ∙ 1010 1.4 ∙ 1010 6.1 ∙ 109

OSCAR 8 cores 2.2 ∙ 1011 6.5 ∙ 1010 1.3 ∙ 1010 4.1 ∙ 109

 swim benchmark cache statistics

 reduction in L3 loads and misses

◼ cause for speedup in comparison to sequential code

 speedup to sequential version (higher is better)

 OSCAR can be used with different backend compilers
◼ slightly lower relative speedups are due to better sequential performance

Intel Xeon E5-2650v4 – ICC backend compiler

122021/10/14

AMD EPYC 7702P – Statistics

132021/10/14

 x86-64 based Architecture

 64 Cores

 2.0 GHz – 3.35 GHz

 16 MiB L3 cache per 4 core cluster

◼ shared within the cluster

AMD EPYC 7702P – Benchmark results

142021/10/14

 speedup to sequential version (higher is better)

 gcc as backend

 CG and swim show superlinear speedup
◼ CG: seq.: 0.86 s, 8 core OSCAR: 0.09 s

AMD EPYC 7702P – CG macrotask graph

152021/10/14

 CG shows superlinear speedup

 macro-task graph consists of sequence of
parallelized loops

◼ good target for loop-aligned decomposition

NVIDIA Carmel ARMv8.2 – Statistics

16

 Arm v8.2 based Architecture

 6 Cores

 1.4 GHz

 4 MiB shared L3 cache
◼ L3 Cache: Shared across all cores

2021/10/14

NVIDIA Carmel ARMv8.2 – Benchmark results

172021/10/14

 speedup to sequential version (higher is better)

 gcc as backend

 overall good speedup is observed
◼ equake: seq.: 19.0 s, 4 core OSCAR: 7.18 s

SiFive Freedom U740 – Statistics

18

 RISC-V based Architecture

 4 Cores

 1.2 GHz

 2 MiB shared L2 cache
◼ L2 Cache: Shared across all cores

2021/10/14

SiFive Freedom U740 – Benchmark results

192021/10/14

 speedup to sequential version (higher is better)

 gcc as backend

 overall good speedup is observed, swim superlinear
◼ BT: seq.: 2041 s, 4 core OSCAR: 551 s

Conclusion

202021/10/14

 The generated code shows high-performance on different
modern architectures

◼ Intel Xeon E5-2650v4 – swim – 8 cores: speedup 7.16

◼ AMD EPYC 7702P – CG – 8 cores: speedup 9.5

◼ NVIDIA Carmel – equake – 4 cores: speedup 2.64

◼ SiFive Freedom U740 – mpeg2 – 4 cores: speedup 3.77

 This data shows that the OSCAR compiler can achieve good
performance on various processor cores such as Intel x86,
AMD x86, Arm and RISC-V

 Superlinear speedup was observed due to last level cache
optimization with the loop-aligned decomposition

 OSCAR compiler can achieve this performance without any
extensive per-system tuning

