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Abstract—Almost all sensors suffer from some level of uncer-
tainty introduced from production inaccuracies. When the sensor
data is processed by machine learning, quantifying the impact
of such production inaccuracies on the output of the machine
learning model becomes difficult.

Certain neural network architectures, such as continuous
feature networks, allow individual features and data to be omitted
while still being able to correctly predict the result without the
need for retraining. Such features can, for example, be individual
channels of a sensor. This article proposes a method to use
the capability to omit arbitrary features or sensor channels to
calculate Shapley values for each sensor channel. These Shapley
values represent the contribution of each individual channel to
the measurement. They are defined using an arbitrary function
called the “value function”. If the value function is defined as
the error of the current measurement, the Shapley values will
represent the contribution of each sensor channel to the error of
the measurement result.

By calculating Shapley values like this for a large unlabelled
dataset of measurements, it is possible to understand how much
measurement error was introduced by which channel of which
sensor in each measurement. Averaging the Shapley values for
each sensor in the dataset will then result in a metric for
each channel of that sensor, which represents a contribution to
measurement errors. By comparing these values to any arbitrary
quality metrics for the sensor channels obtained in a calibration
process or similar step, it is possible to correlate and quantify
which value in the quality metric will cause how much of a
measurement error, or whether the quality metric is even relevant
for the measurement accuracy.

This article will show the efficacy and use case of the
method on an example of the production and quality control
of optical sensors based on multiple spatially resolved reflection
spectroscopy.

Index Terms—explainable ai, big data mining, shapley values
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I. INTRODUCTION

Optical sensors based on multiple spatially resolved reflec-
tion spectroscopy (MSRRS) consist of multiple light emitters
and light detectors arranged in a matrix [1]. By using machine
learning to compare the brightness obtained by the different
detectors at different wavelengths when measuring a sample,
it is possible to predict the concentration of carotenoids in
the sample [2]. However, MSRRS-based sensors are highly
dependent on an accurate calibration to counteract manufactur-
ing inconsistencies. To understand and be able to quantify the
impact of such manufacturing inconsistencies, quality criteria
are collected during the calibration of a sensor. It is thus
important to understand the relationship between the collected
quality criteria and the actual resulting error in the carotenoid
prediction for a sample.

Certain neural network architectures, such as continuous
feature networks [3], have been developed that can predict
the carotenoid concentration in a sample from MSRRS-based
sensor data even when data from one or more light detectors
is missing, without the need for retraining. This ability of
the model to adapt to an input where the data from one or
more detectors is omitted can be used to calculate so-called
Shapley values [4] for a measurement. These Shapley values,
calculated for each detector, represent the contribution of each
detector to the “value” of the measurement prediction. By
defining the value of a measurement prediction as the error
of the current prediction, the Shapley values will represent
the contribution of each detector to the error of the current
measurement prediction.

In order to understand the impact of an arbitrary quality
criterion available for each detector of each sensor, knowing
the contribution to the prediction error for each detector of
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each sensor is critical. By calculating the Shapley values for
each detector for a large dataset of unlabelled measurements,
it is possible to calculate an average contribution to the
prediction error for each detector of each sensor in the dataset.
The data-mined information on error contribution can then
be correlated to the available quality criteria to understand
whether any given quality criterion is relevant, and if so, what
value of the quality criterion corresponds to what level of
expected prediction error.

II. RELATED WORK

Calculating the contribution of individual components to a
whole can be approached with game theory, using so-called
Shapley values. These represent the partial contribution of any
player in a coalitional game to the outcome of the game [4].

Shapley values are a common tool in machine learning in
order to explain model predictions. In this context, the Shapley
values are commonly used to identify which feature supports
the prediction in question, and which feature contradicts it.
There are various approaches to this problem, with many
implementations of the Shapley value for explaining model
prediction slightly differing based on use-case or data struc-
ture [5].

A common issue Shapley value calculation faces is that
since the evaluation effectively needs to be performed for
the power set of features, calculating a Shapley value is NP-
hard [6]. There are various strategies for either estimating
the Shapley value based on assumptions about the context
or calculating an approximation from only considering some
instead of all possible subsets of features [7]. Of particular
interest is an approach from the latter type of approximation,
where feature permutations are stochastically sampled with
a specified distribution [8], which makes it usable in many
applications without the need for domain-specific assumptions.

A problem specific to the usage of Shapley values in
machine learning is that in order to calculate Shapley values,
players, or features in the machine learning context, need to
be omitted from evaluation. However, most neural network
architectures are unable to omit features directly. Different
approaches use different definitions of removing values [9].
Common strategies include replacing a value to be omitted
with a baseline value for the entire dataset [5] or replacing
a value to be omitted with a value common for similar data
points [10].

Several neural network architectures exist for processing in-
put data of arbitrary size, including for sequential data [11], for
point clouds [12], as well as for data with position-dependent
features such as MSRRS-based sensor data [3]. However, so
far, no research has used their properties to process input with
some data omitted to calculate Shapley values. As choosing
an unsuitable removal strategy has a negative effect on the
accuracy of the Shapley value, making use of the adaptive
properties of these neural network architectures for calculating
the Shapley value is investigated in this article.

So far, most research on Shapley values focuses on ex-
plaining model predictions, rather than explaining prediction

errors or related metrics. One exception is an analysis specific
for calculating Shapley values for the uncertainty of a neural
network for classification task, based on entropy [13]. Another
article proposes using Shapley values from the loss of a neural
network to classify error sources [14], however, as that needs
many labeled data points, it is often difficult to put to use
in practice. No specific research seems to have been done
on using Shapley values to explain model prediction error in
regression tasks for unlabelled data.

III. SHAPLEY VALUES FROM ADAPTIVE NEURAL
NETWORKS

Shapley values are originally defined by the following
equation, where N is the set of all features, T is an arbitrary
subset of N , i is the feature for which the Shapley value should
be calculated, and v(X), X ⊆ N is an arbitrary value function
that assigns a value to the coalition of all features in X [4]:

φi(v) =
∑

T⊆N\{i}

|T |! (|N | − |T | − 1)!

|N |!
(v(T ∪ {i})− v(T ))

(1)
In practice, this means that a Shapley value gives the aver-

age value addition of a feature for all possible permutations
of all other features. However, as all permutations of one
combination are expected to be identical, it is represented as
an average of the value addition of a feature for all possible
combinations weighted by the number of permutations per
combination.

In the use case with continuous feature networks, a problem
can be observed. The Shapley value, as defined in (1), requires
the value of all possible combinations of features to be
calculated. However, for predicting carotenoid concentration
from MSRRS-based data, continuous feature networks only
yield acceptable results if at least 72.5% of the data is still
available [3]. Let m be the number of features that are required
to calculate an acceptable result. It is possible to rewrite (1)
so that instead of calculating the average over all possible
permutations of features, we only calculate the average over
all possible permutations of at least m features. For this, the
weighting term of the sum needs to divide the weight not by
the total number of permutations, given by |N |!, but by the
number of permutations with at least m features, given by
(|N | −m) (|N | − 1)!:

φ′
i,m(v) =

∑
T⊆N\{i},|T |≥m

(
|T |! (|N | − |T | − 1)!

(|N | −m) (|N | − 1)!
·

(v(T ∪ {i})− v(T ))

) (2)

It is to note, however, that (2) now no longer represents the
total contribution of the respective feature to the total value,
but only the additional contribution to the value when at least
m other features are already present. For the purposes of error
impact quantification, this is acceptable, as the trained model
cannot predict acceptable results with less than 72.5% of the



data anyway, so error contribution in that regime is of little
interest.

In case the number of combinations with at least m features
is too large to reasonably calculate, it is possible to use
existing, model-agnostic techniques to approximate the Shap-
ley value in conjunction with the proposed method. Possible
techniques are for example stochastic methods to sample the
subsets of features [8], as long as consideration is given to
include the condition to only sample combinations with at
least m features.

In order for the Shapley values yielded by (2) to be the
contribution to the error of a given detector, the value function
v(X) needs to be defined as the prediction error when only the
detectors in X are available. Let ψ(X) be an adaptive neural
network capable of calculating a measurement prediction from
an arbitrary number of detectors, such as a continuous feature
network trained to predict the carotenoid concentration in
a sample from MSRRS-based data. Similarly, let g be the
ground truth for the measurement, then v(X) can be defined
as follows:

v(X) := |g − ψ(X)| (3)

Unfortunately, as the dataset used is unlabelled, g is not
available. As a result, g must be approximated from the
available data. As ψ(N), the prediction of the continuous
feature network using all data available, would be affected
by any error from any detector, it cannot be used as an
approximation for g.

It can be assumed that the majority of the detectors used in
the sensors comprising the dataset are reasonably accurate and
that detectors with a significant error contribution are rare. This
assumption will be supported by findings in section IV. Under
this assumption, if one detector of a sensor has a significant
error contribution, the other detectors are likely to yield a
reasonably accurate result on average. This can be used to
approximate g as the prediction of the continuous feature
network using all detectors except i when used to calculate
the error contribution of detector i:

gi ≈ ψ(N \ {i}) (4)

From this, a value function for calculating Shapley values can
be as follows:

vi(X) ≈ |ψ(N \ {i})− ψ(X)| (5)

The Shapley value is a weighted sum over the difference of
two points of the value function:

vi(T ∪ {i})− vi(T ), T ⊆ N \ {i} (6)

In the case that detector i introduces a prediction error, (6)
yields the marginal contribution of detector i to the coalition
of detectors T , since in that case gi can be assumed to be
accurate. In the case that a different detector introduces a
prediction error, assuming that the prediction error of detectors
is independent of one another, the error in the assumed ground
truth is present approximately equally in both components of
the difference. Thus, even though gi is adversely affected, (6)

is still a good approximation of the marginal contribution of
detector i to the coalition of detectors T .

In the remainder of this article, (5) is used as the value
function for the calculation of all Shapley values.

IV. APPLYING SHAPLEY VALUES TO LARGE DATASETS

Calculating the Shapley values as defined in section III
yields one set of Shapley values for each measurement. In
order to gain knowledge of per-sensor production inaccuracies,
outliers from individual measurements need to be accounted
for. To achieve this, for each sensor, Shapley values are first
calculated for all available measurements and then averaged
for each detector. The resulting average contribution to the
error for each detector of every sensor can be used for further
analysis.

The available dataset contains approximately 2 500 sensors
with a total of 5 500 000 measurements. The measurements
were filtered for successful measurements only, with roughly
4 000 000 measurements contributing to the Shapley values.

While only using detectors that reduce the overall error is
ideal, a certain level of error contribution may be acceptable.
To verify what Shapley value corresponds to the highest
acceptable level of error contribution, the error magnitude ρi
of any detector for an arbitrary measurement is calculated as
follows:

ρi :=
1

|N | − 1

 ∑
t∈N\{i}

ψ(N \ {t})

− ψ(N \ {i}) (7)

The result of (7) represents the difference between the average
prediction of |N | − 1 detectors containing the detector to
be analyzed and the prediction of all detectors except the
detector to be analyzed. By averaging this difference over
multiple measurements, a very rough approximation of the
error introduced by the detector is gained.

Figure 1 shows a distribution of the error magnitude over
the Shapley value for every detector in the dataset of 2 500
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Fig. 1. The distribution of the error magnitude over the Shapley value of all
detectors. st shows the threshold Shapley value.
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Fig. 2. The distribution of the Shapley value of all detectors over the
production date, indicating differences between production lots. A systematic
deviation in the second to last production lot can be seen.

sensors. As the target for the maximum prediction error for
this type of MSRRS-based sensor is ±0.25, the maximum
accepted Shapley value st is defined as 0.1 from this data.
As a result, all detectors with a Shapley value exceeding the
threshold of st = 0.1 are deemed of insufficient quality. In
addition, Figure 1 shows that the overwhelming majority of
detectors are accurate and do not introduce significant error.
96.7% of detectors have a Shapley value below the threshold
of 0.1. Similarly, 71.6% of detectors have a Shapley value
below 0, which means that the detector will generally improve
the measurement accuracy when at least m other detectors are
available. This supports the assumption about rare detectors
with a significant error contribution from section III.

In order to validate the usefulness of the Shapley value
as a quality metric, the distribution of Shapley values over
production lots will be analyzed. Due to known and otherwise
compensated production issues, one detector showed system-
atic deviations in the second to last production lot. Figure 2
shows that in the affected production lot, a significant increase
of detectors with a higher Shapley value (and one above the
threshold st) is observable. This shows that certain systematic
deviations of the affected detectors are detectable with the
presented Shapley value-based analysis method.

V. SHAPLEY VALUE INTERPRETATION

In order to use the calculated Shapley values to quantify the
efficacy of arbitrary quality criteria, the distribution of Shapley
values over any given quality criterion needs to be analyzed.
For MSRRS-based sensors, one quality criterion of interest
is the leakage current of the light detectors. This metric is
expected to be relevant, as leakage current will cause a detector
to not be able to differentiate between very low light and
total darkness, resulting in loss of information. As the leakage
current classifier can be measured easily during calibration,
being able to use it as a calibration quality criterion is desired.

Figure 3 shows a heatmap of the distribution of Shap-
ley values over a metric that measures the leakage current
observed from the light detectors in MSRRS-based sensors,
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Fig. 3. The distribution of the Shapley value over the observed leakage current
classifier (negative values indicate a high leakage current) of all detectors.
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Fig. 5. The rough distribution of Shapley values over different leakage current
classifiers. The top graph shows the absolute distribution, while the bottom
graph shows the relative distribution. A shift in distribution is observable at
a leakage current classifier of around −260.

where negative values indicate a higher leakage current. The
first observation from Figure 3 is that the vast majority of
detectors have a leakage current classifier close to 0, and
thus no significant deviance in observed leakage current to the
expected value. The second observation is that the detectors
that do not have a leakage current close to 0 also have a much
wider distribution of Shapley values.

Figure 4 helps to get a more detailed picture of how the
Shapley values are distributed for different leakage current
classifiers. The first histogram shows the distribution for
leakage current classifiers close to 0, which shows that almost
all detectors in this regime have a Shapley value below the
threshold of 0.1. When looking at detectors with a lower leak-
age current classifier, it becomes apparent that the distribution
changes to a majority of detectors exceeding the threshold
Shapley value of 0.1.

In order to learn at which leakage current classifier the
Shapley value distribution exceeds an acceptable level of
detectors above the Shapley value threshold, an analysis of the
Shapley value distribution over the leakage current classifier,
as seen in Figure 5, can be used. As visible in Figure 5, there
is a threshold at a leakage current classifier of around −260
where the rate of detectors with a Shapley value of 0.1 and
higher increases sharply. From this, it can be deduced that
−260 is a good threshold at which to reject detectors during
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Fig. 6. The rough distribution of Shapley values over different detector
brightness scale factors. The top graph shows the absolute distribution, while
the bottom graph shows the relative distribution. No clear shift in distribution
is observable.

calibration. Setting this criterion to −260 would keep 96.2%
of detectors. For approximately 1.2% of all detectors with an
acceptable Shapley value, this criterion is a false positive. At
the same time, this criterion alone is able to catch 80.1% of all
detectors with an unacceptable Shapley value. Of the detectors
that are filtered by this criterion, 68.6% have an unacceptable
Shapley value.

Such an analysis, correlating calibration quality criteria with
Shapley values, can be performed for various other quality
criteria as well. One notable example can be seen in Figure 6.
The figure shows how much a detector’s overall brightness
is scaled from the calibration process. A high value means
that the detector returns comparably dark results and needs
to be scaled up, while a low value means that a detector
returns bright results and needs to be scaled down. Unlike the
distribution seen in Figure 5, the distribution in Figure 6 does
not show any clear thresholds or any regions of the scale factor
in which detectors with an unacceptably high Shapley value
are prevalent. This suggests that using the detector’s brightness
scale factor is not a suitable metric based on which to reject
an MSRRS-based sensor. Nonetheless, darker detectors appear
to perform slightly below bright detectors as measurement
precision is lost. The trend in Figure 6 suggests that if even
darker detectors exist, a maximum acceptable brightness scale
factor might be observed through the proposed method.



VI. CONCLUSION

This article introduces a method on how to calculate Shapley
values to explain model predictions by using adaptive neural
network architectures capable of directly omitting features.
Furthermore, a method on how to use these Shapley values
to predict the contribution of any feature to the error of one
measurement prediction is introduced.

By applying the introduced method to all measurements of
a large unlabelled dataset, a way to gain knowledge about sys-
tematic error sources from features in the dataset is presented.
Comparing the Shapley values yielded from this process to
error estimations, it is shown how the gained knowledge can be
used to understand error sources. Similarly, the Shapley values
can be correlated with arbitrary quality criteria and other
metrics of the features of the models to quantify the efficacy of
any given quality criterion. Furthermore, the proposed method
allows any thresholds in the metrics beyond which prediction
error is introduced to become apparent.

The proposed method for error quantification is examined
on the example of optical multiple spatially resolved reflec-
tion spectroscopy-based sensors. The method is validated on
known data and then used to quantify two quality metrics as
an example. For one of the metrics, the method was able
to determine that within the range present in the produced
sensors, no region of the metric corresponds to a significant
prediction error, showing that the chosen quality metric is of
low efficacy. For the other metric, the method was able to
show high efficacy and identified a clear threshold beyond
which the prediction accuracy of the measurement exceeds
acceptable limits.

This shows that in conclusion, the proposed method is
capable of analyzing large unlabelled datasets, identifying the
efficacy of different metrics and quality criteria, and is able to
detect concrete thresholds for usable metrics.
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