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Abstract—Continuous Kernels have been a recent development
in convolutional neural networks. Such kernels are used to
process data sampled at different resolutions as well as irregularly
and inconsistently sampled data. Convolutional neural networks
have the property of translational invariance (e.g., features
are detected regardless of their position in the measurement
domain), which is unsuitable for certain types of data, where the
position of detected features is relevant. However, the capabilities
of continuous kernels to process irregularly sampled data are
still desired. This article introduces a novel method utilizing
continuous kernels for detecting global features at absolute
positions in the data domain. Through a use case in processing
multiple spatially resolved reflection spectroscopy data, which is
sampled irregularly and inconsistently, we show that the proposed
method is capable of processing such data natively without
additional preprocessing as is needed using comparable methods.
In addition, we show that the proposed method is able to achieve
a higher prediction accuracy than a comparable network on a
dataset with position-dependent features. Furthermore, a higher
robustness to missing data compared to a benchmark network
using data interpolation is observed, which allows the network to
adapt to sensors with individual failed components without the
need for retraining.

Index Terms—machine learning; neural nets; continuous ker-
nel; irregularly sampled data; reflection spectroscopy

I. INTRODUCTION

Common machine learning methods assume that data is
sampled consistently. That is, each instance of sampled data
has the same shape and each data point always represents the
same value. However, in real-world applications, data might
often be sampled inconsistently due to factors like production
inaccuracies of sensors measuring the data. In some cases,
certain data points may be missing from a measurement as
well. To facilitate this type of data, imputation of missing
data points can be used to reconstruct the data [1]. Some
methods also employ neural networks to reconstruct or correct
data [2]. For certain types of network architectures, such as
convolutional neural networks [3], continuous kernels have
been utilized to circumvent these assumptions and to handle
irregularly and inconsistently sampled data natively instead
of needing special preprocessing [4] [5] [6]. Convolutional

neural networks have the property of translational invariance,
which is ill-suited to data expected to exhibit features at
consistent absolute positions within the data sampling domain.
Common examples of this type of data include spectral data,
both optical and acoustic, where the relevant features may be
intensity peaks at specific, consistent wavelengths rather than
a wavelength-invariant feature of the intensity curve’s shape.

To process data with position-dependent features natively
when sampled irregularly and inconsistently, a novel method is
proposed in this paper. It has been shown that neural networks,
such as sinusoidal representation networks (SIRENs) [7] can
be used as functions parametrized through their learnable pa-
rameters, making them suitable for use as continuous kernels.
These kernels are shown to be capable of modeling global,
long-term dependencies [4]. By utilizing such continuous ker-
nels outside of the context of convolutional neural networks,
our method is capable of natively processing irregularly and
inconsistently sampled data with position-dependent features.

The rest of the article is organized as follows. Section 2
details the current state-of-the-art regarding continuous ker-
nels. Section 3 discusses the definition of a continuous kernel.
Section 4 introduces the new methodology utilizing continuous
kernels. Section 5 shows the efficacy of the proposed method
for processing spectroscopy data. Section 6 discusses potential
future research into using continuous kernels for explainable
AI. The conclusion closes the article.

II. RELATED WORK

Previous work on continuous kernels focuses primarily
on applications in convolutional neural networks (CNNs) to
handle irregularly sampled data. In [4], continuous kernels are
utilized to process various types of sequential data, includ-
ing irregularly sampled sequences. The article also performs
an in-depth analysis of different types of continuous kernel
parametrizations. [5] uses continuous kernels for convolutional
neural networks to process non-grid bound data, such as
representations of atoms in chemistry. In [6], continuous
kernels are used to perform three-dimensional convolution
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on point clouds. However, as these articles all discuss the
usage of continuous kernels for convolution in typical CNN
architectures which all feature certain degrees of translational
invariance, the methods discussed are not well suited for use
with data containing position-dependent features.

Utilizing neural networks to represent a continuous function
parametrized through the learnable parameters of the network,
called implicit neural representation, has been previously ana-
lyzed by [8] [9] to model signed distance functions which are
required for shape representation of 3D geometry. In [7], a
network architecture called SIREN is proposed as an implicit
neural representation for generic data, including audio, images,
and signed distance functions.

III. DEFINITION OF CONTINUOUS KERNELS

At its core, a continuous kernel is a function that assigns
a weight to a data point at any given position [5]. Unlike in
previous applications in CNNs, however, the position supplied
to the kernel in our methods is an absolute position in the
domain rather than a relative position to a convolution point.

To be able to represent continuous variants of typical weight
kernels, the kernel function needs to be parametrizable with
learnable parameters in such a way that the kernel function can
ideally approximate any arbitrary function. It has been shown,
that multi-layer perceptrons using sine nonlinearities, such as
SIREN networks [7] can be used for such purposes.

Formalities

Small letters denote scalars, and small bold letters denote
vectors. Capital letter variants of the former denote a set of the
respective type. Subscripts on values indicate an index of the
value within a containing set, superscripts indicate an index
to the element of a vector.

Definition

Let pi ∈ P ⊂ Rn be the position of the value di ∈ D ⊂
R of the i-th data point of the set of data points D in an
n-dimensional domain. A continuous kernel in the proposed
architecture is now defined as a function

ψ : Rn 7→ R (1)

assigning a weight value to any position pi in the do-
main. As shown in [4], such functions can be modeled and
parameterized using implicit neural representations, such as
Multi-Layer Perceptrons (MLP) using sine nonlinearities like
SIREN [7]. In the proposed method, such an MLP serves as the
function ψ. The MLP has n input neurons to input the absolute
position pi ∈ R of a data point in the domain and one output
neuron representing the assigned weight for the data point.
The remaining model parameters of the kernel are the number
and size of hidden layers in the MLP which can be adjusted
to the problem to be learned. The MLP serving as the weight
function ψ of a continuous kernel is not trained separately, but
rather as part of the final network that the continuous kernel
is used in.

IV. APPLICATION OF CONTINUOUS KERNELS IN MLPS

Figure 1 shows the general structure of the proposed archi-
tecture. I shows the set of input data points to the model,
each representing a value at a specific position within the
measurement domain. In the proposed method, the first layer
of the architecture, called the continuous feature layer, contains
multiple independent continuous kernels (see II in Figure 1).
For each of the independent kernels, the input consisting of an
arbitrary number of data points is weighed using the kernel.
Additionally, the input data might be sampled unevenly. To
compensate for an uneven distribution of samples the local
density of the sampled data points in the measurement domain
is calculated (omitted in Figure 1). In the proposed method,
kernel density estimation where the kernel size is a learnable
parameter was used, but other methods for point density
estimation can be used as well. Each data point is weighted
by the inverse local density of data points at its position as
proposed in [6]. The data points weighted by both the kernel
and the inverse point density are shown in III in Figure 1 and
are formally expressed in Equation 2. For each kernel, the
weighted data points are reduced to a single value as defined
in Equations 3 and 4 and as shown in IV of Figure 1. In the
proposed method, a sum is used as the reduction operation, but
other reductions, such as calculating the mean of the values
are also considerable. Combining the reduced value of each
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Fig. 1. Overview of a continuous feature network.



kernel into a vector results in an output feature vector of a
fixed size depending on the number of independent kernels in
the continuous feature layer. Since the continuous feature layer
has reduced the input of arbitrary size to a latent vector of a
fixed and predetermined size, the continuous feature layer can
be followed with a typical neural network architecture, such
as a multi-layer feed-forward network (see V in Figure 1).
The output of this MLP then serves as the output of the entire
network as depicted in VI of Figure 1. We call the proposed
combination of a continuous feature layer followed by a multi-
layer feed-forward network a continuous feature network. The
continuous feature layer as described has three main model
parameters: The number of kernels and the two parameters
defining the shape of the kernels, being the number and the
size of its hidden layers.

Formal Definition

Let the set Ψ be the set of multiple, independent continuous
kernels ψk used in the continuous feature layer. In this set,
each ψk represents one feature possibly present in the sampled
data. Let di ∈ D be the i-th data point in the input data with
the position pi ∈ P in the measurement domain. Let ρ(pi)
denote the local density of sampled data at position pi in the
domain. Then we define the weighted data points for each
kernel as follows:

wi,k := di · ψk(pi) ·
1

ρ(pi)
(2)

The components of the resulting fixed-size latent feature vector
v are defined as follows:

vk(D,P ) :=
∑
i

(wi,k) (3)

=
∑
i

(
di · ψk(pi) ·

1

ρ(pi)

)
(4)

As the fixed size feature vector v is a function of the data
points and their position, the feature vector can be expressed
as a function of the following type:

v : Ri,Ri×n 7→ Rk (5)

v describes the feature vector with a fixed size k as a reduction
of an input of arbitrary size i for the data and i × n for the
data’s position for any i. Since the size of the feature vector
v is fixed and does not depend on the input size i, the feature
vector can be used as the input to a classical neural network
architecture, such as a multi-layer feed-forward network, for
an arbitrary input size i without the need to retrain the network.

V. EXPERIMENTS

The method is tested with a dataset from a sensor based on
multiple spatially resolved reflection spectroscopy (MSRRS,
[10]). The data was measured in vivo, alongside a reference
measurement of the carotenoid concentration in the skin on a
scale ranging from 0 to 12. The measuring system, similar to
the one described in [10], consists of several light emitters of
different wavelengths, as well as several light detectors. The

datasets for training and testing are entirely distinct, having
measured a different group of test subjects using a different
set of MSRRS-based sensors.

The measured spectroscopic data is well suited for the
use of continuous kernels and continuous feature networks as
proposed in section IV. This is because the MSRRS-based
optical data is yielded in the shape of a relative brightness
given for certain discrete wavelengths and certain discrete
distances between light-emitter-detector pairs. These discrete
wavelengths and distances are neither sampled at regular
intervals nor always at the same exact wavelengths. Due
to production inaccuracies for the sensors, slight differences
in the wavelength of the emitters exist. However, the peak
wavelengths are known for each sensor’s emitters, and can thus
be accurately supplied as the position data for the continuous
feature layer. In addition, in this kind of spectral data, it is
expected that the relevant data is encoded not in the shape
of features to be detected, but in the position of the features
(here the absorption wavelengths of the carotenoids), making
the proposed method suitable.

To evaluate the method, a continuous feature network with
a continuous feature layer containing 64 continuous kernels is
used. Each kernel is made up of a SIREN network, containing
three hidden layers of 48 nodes with sine nonlinearities each.
The continuous feature layer is followed by a hidden feed-
forward layer with 64 nodes, followed by an output layer with
one output for the predicted carotenoid concentration. This
network has approximately 320k parameters.

For a comparison network, we use a multi-layer feed-
forward neural network using a similar amount of parameters.
This feed-forward network is supplied each emitter-detector
pair as one node in the input layer, followed by a hidden layer
of 256 nodes, followed by another hidden layer of 128 nodes,
followed by an output layer with one output for the predicted
carotenoid concentration, for a total of approximately 375k
parameters.

A convolution-based model was also investigated but it
has proved unable to produce meaningful predictions of the
carotenoid concentration in human skin and is thus omitted
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Fig. 3. A histogram of the prediction error of the continuous feature
network at different numbers of light detectors whose data was withheld.

from further analysis in this article.
Both networks were trained using the ADAM optimizer [11]

and implemented using the LibTorch framework.
Figure 2 shows the accuracy of the proposed method

compared to the accuracy of the comparison network. To
show the ability of the continuous feature network to handle
inconsistently sampled data, the prediction accuracy of the
network was measured with the data of certain detectors
withheld during inference. For each sample of data in the
test set the detectors whose data was withheld were randomly
picked, according to the number of detectors disabled. For the
continuous feature layer, the missing data points were simply
removed from the input vector. Due to the nature of the contin-
uous feature network, it is capable of processing the shorter
input vector without the need to retrain the model. For the
multi-layer feed-forward network, the data was interpolated
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Fig. 4. A histogram of the prediction error of the multi-layer feed-forward
network at different numbers of light detectors whose data was withheld.

from the data of other detectors with a similar wavelength
and emitter-detector distance. This is needed as the multi-
layer feed-forward network is incapable of handling the shorter
input vector without retraining. If no other data was available
with a similar wavelength and distance, the value was set to 0
for the multi-layer feed-forward network. The results show that
the continuous feature network outperforms the similarly-sized
multi-layer feed-forward network for all investigated numbers
of detectors whose data was withheld. The continuous feature
network is able to achieve a mean square error of 19% lower
compared to the multi-layer feed-forward network for the full
set of input data. The improved prediction accuracy can be
explained both by the high suitability of continuous feature
networks for MSRRS data allowing an improved abstraction
of the relationship between optical data and the reference
carotenoid concentration in human skin, as well as because the



continuous feature network is able to incorporate the actual
measured wavelengths of the light emitters for each sensor
as the position of the input data points. In addition, we see
that the continuous feature network is able to give a stable
prediction with more data missing compared to the multi-
layer feed-forward network. This can also be seen in Figures 3
and 4. Figure 3 shows a histogram of the prediction error of the
continuous feature network. In the different graphs, a different
number of random light detectors were picked whose data was
withheld from the continuous feature network. As the graph
shows, while the amount of highly accurate precision lowers
with more data being withheld, the amount of predictions with
a large error (> 2.4) is not increasing significantly. This shows
that the continuous feature network is capable of adapting to a
lower amount of data being available to base its predictions on
without the need for retraining. Figure 4 shows a histogram of
the prediction error of the multi-layer feed-forward network.
Similarly, the different graphs show the prediction error at
different amounts of detectors whose data was withheld. In
addition to a reduction in highly accurate predictions with
more data withheld, the multi-layer feed-forward network
quickly encounters an increase in predictions with a large
error (> 2.4) once the amount of withheld data from disabled
detectors increases to or above 25%. The slight increase of
predictions with a large error occurring for the continuous
feature network when no data is withheld is presumed to be
due to an inaccurate input data point density estimation and
will be subject to further investigation.

VI. POTENTIAL FOR EXPLAINABLE AI

A side effect of the continuous feature layer is the resulting
potential for explainable AI. As continuous kernels represent
weights for each position in the measurement domain, we
can deduct levels of importance of certain regions within the
measurement domain from the encoded weights. The average
of the absolute value of the weights over all kernels might
be used as a measure of the importance of the data at certain
points in the measurement domain. This may allow the use
of the learned continuous kernels as an interpretable model
[12]. However, as the magnitude of the input data at different
positions in the measurement domain is not guaranteed to
the normalized, any inferred importance from the kernel can
be biased which will need to be accounted for. Similarly,
the MLP being fed the latent feature vector will need to be
considered when comparing the importance of the different
kernels. Nonetheless, the usage of continuous feature layers
as a tool for explainable AI is an interesting topic for further
research.

VII. CONCLUSION AND FUTURE WORK

This paper proposes the continuous feature network, a novel
method to process irregularly and inconsistently sampled data
with position-dependent features, such as optical or acoustic
spectra. In addition, the continuous feature network is shown
to outperform a comparable multi-layer feed-forward network
with a 19% lower mean square error on predicting carotenoid

concentration in human skin from optical multiple spatially
resolved reflection spectroscopy data. This shows that the
continuous feature network performed better at abstracting the
relationship between the optical MSRRS data and the refer-
ence carotenoid concentration. Furthermore, this paper shows
that the continuous feature network is capable of making stable
predictions of carotenoid concentration in human skin with
up to 50% of the data from the optical detectors withheld,
while a comparable multi-layer feed-forward network exhibits
a significant increase in predictions with a large error from
25% of the data withheld. Other potential use cases include
similar types of data where samples may be irregular and
features are position-dependent in the measurement domain,
including other types of spectra, such as audio. Continuous
feature networks also show potential for use as explainable
AI and are worth studying further in this regard.
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[5] K. T. Schütt, P.-J. Kindermans, H. E. Sauceda, S. Chmiela,
A. Tkatchenko, and K.-R. Müller, “Schnet: A continuous-filter con-
volutional neural network for modeling quantum interactions,” in Pro-
ceedings of the 31st International Conference on Neural Information
Processing Systems, 2017, p. 992–1002.

[6] W. Wu, Z. Qi, and L. Fuxin, “Pointconv: Deep convolutional networks
on 3d point clouds,” in 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2019, pp. 9613–9622.

[7] V. Sitzmann, J. N. P. Martel, A. W. Bergman, D. B. Lindell, and
G. Wetzstein, “Implicit neural representations with periodic activation
functions,” in Proceedings of the 34th International Conference on
Neural Information Processing Systems, 2020.

[8] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove,
“Deepsdf: Learning continuous signed distance functions for shape
representation,” in 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019, pp. 165–174.

[9] K. Genova, F. Cole, A. Sud, A. Sarna, and T. Funkhouser, “Local deep
implicit functions for 3d shape,” in 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), jun 2020, pp. 4856–
4865.

[10] M. E. Darvin, B. Magnussen, J. Lademann, and W. Köcher, “Multiple
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