
EG UK Computer Graphics & Visual Computing (2023)
D. Hunter and P. Vangorp (Editors)

Intra-Model Smoothing Using Depth Aware Multi-Sample
Anti-Aliasing for Deferred Rendering Pipelines

B. M. Magnussen1

1FreeSpace 2 Source Code Project

I

II

Figure 1: A community-created model by modeller Brand-X for the mod Fate of the Galaxy [Fat], rendered in FreeSpace Open [Fre23]. The
top half shows the previous render pipeline, the bottom half has the proposed method enabled. Section I shows exaggerated geometry, and
section II shows jagged geometry. The respective mirrored geometry rendered with the proposed method shows significantly reduced issues.

Abstract
Subpixel geometry often causes lighting artifacts. In some cases, post-process anti-aliasing algorithms are not sufficiently
able to smooth the resulting image. For forward rendering pipelines, multi-sample anti-aliasing is a powerful tool to avoid
such artifacts. However, modern rendering pipelines commonly use deferred shading, which causes issues for multi-sample
anti-aliasing. This article proposes a new method of combining a pipeline using deferred shading with multi-sample anti-
aliasing while avoiding common pitfalls. The proposed method achieves this by intelligently resolving the geometry buffers
with a custom shader based on the depth of samples. This allows the lighting shader to run unchanged on the geometry buffer
on a per-fragment basis without additional performance costs. Furthermore, the proposed method is easy to retrofit to existing
engines as no changes are required to either the model rendering shader or the deferred lighting shader. The proposed method is
demonstrated and implemented on the example of the open-source game engine FreeSpace Open. It is shown that the proposed
method is capable of preventing subpixel geometry artifacts, while also avoiding lighting artifacts from resolving geometry
buffers and avoiding the performance overhead of calculating lighting per sample.

CCS Concepts
• Computing methodologies → Antialiasing; Rendering;

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

https://orcid.org/0000-0003-2429-9994

B. M. Magnussen / Depth Aware Multi-Sample Anti-Aliasing for Deferred Rendering Pipelines

1. Introduction

Many real-time 3D rendering applications use a technique called
deferred shading [PF05] to improve the visual accuracy of the
scene. In a pipeline using deferred shading, the scene is first ren-
dered to a so-called geometry buffer (g-buffer) which contains in-
formation about the position, normal vectors, and depending on
the pipeline other physical properties of the part of a model vis-
ible at each pixel of the screen. Only after the full scene is ren-
dered to the g-buffer will the lit scene be rendered from the in-
formation available in the g-buffer. Because this causes the lit
scene to not be rendered from the actual geometry, multi-sample
anti-aliasing (MSAA, [PMH02]) cannot be used to directly ren-
der the final image. Using multi-sample anti-aliasing to render
the g-buffer causes lighting artifacts. This is because when the
multi-sampled g-buffer is resolved, the smoothing of single pixels
which contain multiple different models will result in incorrectly
blended values in the g-buffer [HH04]. Thus, techniques for per-
forming anti-aliasing in screen space on the rendered scene dur-
ing post-processing have been developed, such as fast approximate
anti-aliasing (FXAA, [Lot09]) or enhanced subpixel morphological
anti-aliasing (SMAA, [JESG12]).

Figure 1 shows an example rendered in the open-
source FreeSpace Open [Fre23] engine, based on the game
FreeSpace 2 [Vol99]. The image’s top half is rendered using
deferred shading and FXAA, and aliasing artifacts are still visible.
These artifacts are caused by noisy, subpixel geometry details
which result in aliasing artifacts in the normal buffer, as visible
in Figure 2. Other, more advanced techniques for anti-aliasing,
such as temporal anti-aliasing (TAA [YLS20]) may be able to
improve upon the image quality but present a significant effort
to be integrated into existing rendering pipelines, especially if
not designed for methods such as TAA. This article proposes
a new method of utilizing MSAA by resolving multi-sampled
g-buffers manually using depth-based median weighting in order
to reduce visual artifacts caused by noisy geometry while avoiding
blending unconnected models and thus causing visual artifacts.
The proposed method does not require any changes to either the
model rendering shader or the deferred lighting shader, which
allows for very easy retrofitting into any existing render pipelines
using deferred shading. In addition, the proposed method will

Figure 2: Closeup of section I from Figure 1. The right image
shows the normal buffer. Exaggerated geometry lighting caused by
aliasing in the normal buffer is clearly visible.

be implemented into and demonstrated on the FreeSpace Open
engine, as can be seen on the bottom half of Figure 1, with the
visible artifacts significantly reduced. The proposed method will
be explained on regions of interest in Figure 3.

2. Related Work

One of the most common approaches for anti-aliasing with deferred
shading is to use a post-process anti-aliasing technique, which an-
alyzes visible discontinuities in screen space and applies smooth-
ing respectively. One such implementation is FXAA [Lot09] which
performs smoothing based on luminance edge detection. Another
similar approach is SMAA [JESG12] which estimates the original
geometry from edge detection and corrects the color of pixels on
the edge accordingly.

More modern rendering pipelines also often use TAA [YLS20],
which blends multiple subsamples of a pixel over multiple frames
in order to archieve results similar to MSAA without the issues
presented by utilizing MSAA with deferred rendering and without
the added cost of rendering multiple samples per frame. However,
TAA both introduces a very slight temporal lag and image smear,
but more importantly is also more complicated and effort to inte-
grate, especially if used in existing rendering pipelines which are
not designed to utilize TAA.

Specifically in the context of deferred shading, it has been sug-
gested to perform similar post-process anti-aliasing, improving
the decision of which pixels to blend with the content of the g-
buffer [HH04]. Especially utilizing the content of the position and
the normal buffer is interesting for such an approach. In a simi-
lar manner, there has been research into combining such g-buffer
enhanced post-process anti-aliasing with MSAA [CML11]. In this
approach, the g-buffer is rendered using MSAA, however, shading
is only performed on one of the samples. The post-process anti-
aliasing pass however utilizes the available multi-sampled geome-
try data to improve its accuracy.

Another option to utilize MSAA with deferred shading is to per-
form the lighting pass per sample instead of per fragment [Thi09,
HH04]. In this approach, the multi-sampled g-buffer is never re-
solved. Instead, it is the task of the deferred lighting shader to
compute the final color for each sample, and then blend these to
one pixel. While this approach makes use of the multi-sampled g-
buffers, it causes the final shading to effectively run like supersam-
pling, where every output pixel is required to be shaded for each
possible sample. This drastically increases the computational cost,
even if many pixels would not benefit from multisampling. To alle-
viate this, it is possible to store information about which pixels may
require shading from multiple samples, and for which one sample
may suffice [NVI]. In this approach, if a pixel consists of samples of
only the same polygon, the deferred lighting shader will only com-
pute the lighting once for the pixel, instead of once for each sam-
ple. Alternatively, it is possible to utilize information about screen
space discontinuities from the g-buffer to decide whether or not a
pixel needs to be shaded from all or just from one sample.

Optimization of especially memory usage and memory band-
width utilization of similar per-sample shading strategies has been

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

B. M. Magnussen / Depth Aware Multi-Sample Anti-Aliasing for Deferred Rendering Pipelines

researched as well, as memory usage and memory bandwidth have
often been bottlenecks for per-sample shading [FT20].

Utilizing shaders to resolve multi-sampled buffers has been pre-
viously investigated [Pet12]. However, the research was focused
on resolving color buffers using different types of blending kernels
and was not applied to deferred shading. In addition, it was not ex-
tended to perform selective blending as is required for the method
proposed in this article.

Similarly, utilizing the world position stored in the g-buffer as a
source for heuristics has been investigated in the context of noise
filtering the g-buffer [MIGMM17]. Application or usage in the con-
text of MSAA has not been studied, however.

3. MSAA in Deferred Render Pipelines

At the core of the problem of utilizing MSAA to render the g-buffer
and then resolve it to perform deferred shading per pixel instead of
per sample, is that in some cases, blending multiple position or nor-
mal samples results in nonsensical values, causing incorrect light-
ing [NVI]. This can be seen in Figure 4, which is a region of inter-
est of Figure 3. The left image shows the render without any kind
of multisampling. The center render is the result of multisampling
when rendering to the g-buffer, resolving the g-buffer, and then per-
forming the final shading on the resolved g-buffer. Noticeably, the
left edge of the model has a blue highlight. This is caused by a
combination of two things. First, a short distance behind the model
is a light source. Secondly, on the edge of the model, the position
and normal of the model are blended with the position and the nor-
mal of the background. As a blended position of background and
model results in a position behind the light source, the resulting
pixel erroneously reflects the light source behind the model, thus
being rendered as lit up. On the right is the result of rendering with
the proposed method as introduced in this section.

In order to avoid the kinds of lighting artifacts as seen in Figure 4
when resolving the g-buffer, two samples may only be blended
when they stem from the same object. If two samples stem from

I

II

III

IV

Figure 3: A community-created model by modeller Nyctaeus for
the FreeSpace Upgrade Project [Fre], rendered in FreeSpace
Open [Fre23] in the previous render pipeline without the proposed
method. Boxes I to IV highlight regions of interest.

Figure 4: Closeup of section I from Figure 3. The left shows the
image in the original pipeline without the proposed method, the
center shows a naive MSAA implementation with incorrect edge
lighting artifacts, the right image shows the proposed method.

two separated objects, or if there is significant space between the
two samples, they must not be blended, and instead, one of the two
must be chosen to represent the pixel.

This can be achieved using explicit multisampling, which was
added in OpenGL 3.2 and DirectX 10. With explicit multisampling,
it is possible to access the different samples of a multi-sampled ren-
der target directly from within a shader, not needing to previously
resolve the multi-sampled texture. In the proposed method, two sets
of g-buffers are created. One is multi-sampled, and the other is not.
During rendering, the models are then rendered into the g-buffer
using multisampling. Then, a custom multi-sample resolve shader
is invoked by drawing a full-screen quad to the non-multi-sampled
g-buffer. For each fragment, the shader will read all samples from
the multi-sampled g-buffer, and blend them according to a weighted
average according to their distance. Two samples close to one an-
other can be blended equally. If the samples are far apart, one must
be chosen over the other instead. As the distance of samples in the
screen plane is always close to one another, given that the samples
stem from the same fragment, the relevant distance between sam-
ples is given from the difference in their depth. For discussions on
the requirements and different options for the weighting algorithm,
see section 4. The resulting non-multi-sampled g-buffer can be uti-
lized for the deferred shading step with per-fragment shading.

As it is shown in the upper images of Figure 5, without the pro-
posed method, the g-buffer exhibits aliasing artifacts. The lower
images of Figure 5 show, that with the proposed method, the intra-
model aliasing artifacts (most notably, the red edge on the lower
right of the image) are properly smoothed. At the same time, the
proposed method does not incorrectly blend the blue-green edge
on the top left of the image, as this edge is between two parts of
the model with significant space between them. While this allows

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

B. M. Magnussen / Depth Aware Multi-Sample Anti-Aliasing for Deferred Rendering Pipelines

Figure 5: Closeup of section II from Figure 3. The top image set
shows the previous pipeline without the proposed method, the bot-
tom image set shows the proposed method. The right image is the
normal buffer before the lighting pass. Normal aliasing is clearly
visible in the previous pipeline.

proper anti-aliasing of intra-model geometry, it does not allow for
anti-aliasing of outer model edges. Hence, while the visual quality
of the model itself benefits, post-process anti-aliasing passes are
still required to enhance the visual quality of the model edges.

Another advantage of the proposed method is the ease of integra-
tion into an existing render pipeline, as shown in Figure 6. While
other methods, especially those with per-sample shading, would re-
quire changes to the model rendering shader and the main deferred
lighting shader, the proposed method does not. This is because the
required multi-sampling of the model render pass is done by the
graphics library, and the deferred shading can happen identically as

render background
to emissive buffer

switch to multi-
sampled framebuffer

render models

switch to normal
framebuffer

draw MSAA
resolve shader

perform
deferred shading

render background
to emissive buffer

render models

perform
deferred shading

Figure 6: The graphics pipeline of FreeSpace Open before (left)
and with the proposed method (right). New pipeline stages are red.

before per fragment once the g-buffer is resolved with the custom
multi-sample resolve shader. The only required changes to a ren-
dering pipeline for the proposed method are that the render target
needs to be changed to be multi-sampled, and the custom multis-
ample resolve shader needs to be invoked. Both the model render-
ing shader, and the deferred lighting shader can be left unchanged.

The proposed method has a notable performance cost compared
to a native resolve of the MSAA buffer, especially when a tile-
based GPU such as the Mali GPU [Har14] is used, as the multi-
sampled texture texture has to be written back to memory instead of
being able to be resolved per-tile. Implemented into the FreeSpace
Open engine and tested on an NVIDIA RTX 2070, the additional
g-buffer resolve pass takes 0.5 ms for four samples, and 1.1 ms for
eight samples per fragment at a resolution of 1920× 1080, which
is however an acceptable level of additional performance cost.

4. Multi-Sample Resolve Weighting Algorithms

The weighting algorithms used for the proposed method must fulfill
three criteria in order to prevent rendering artifacts.

• Samples close in depth need to have similar weight
• Samples far away from each other in depth may not both have a

high weight
• At least one sample must have a non-zero weight

The simplest possible algorithm that satisfies these criteria is to
find the smallest depth of all samples, and then weigh a sample
with 1 if it is close to this minimum depth, and with 0 if it is not.
A slightly improved algorithm could replace the hard cutoff with
a smoothstep, in which case we call it the front-first algorithm, as
it fills the fragment with the frontmost samples. The definition of
close can depend on the setting. If a common scale of objects is
known in the context of what will be rendered, it is possible to
define close in terms of the scale of details on the objects to be
rendered. When this is not the case, for example with the model in
Figure 3, close can be defined relative to the scale of a fragment.
In the proposed method, two samples are considered close when
their difference in depth is within a certain factor of the width of
their fragment. Given a perspective projection matrix, this is the
case if Equation 1 is fulfilled, with d1 and d2 being the respective
depths, f ov being the horizontal field of view angle, width being
the number of fragment columns over which the field of view will
be rendered, and c being the aforementioned factor. Experiments
show a factor of 5 to be a good compromise between artifacts and
overly strict prevention of smoothing.

|d1 −d2|< min(d1,d2) · tan
(

f ov
width

)
· c (1)

Another option, as opposed to the front-first approach, is to in-
vert the selection by finding the largest depth of a sample and as-
signing a weight of 1 to samples close to it and 0 to others. This
algorithm, called back-first will fill the pixel with the sample that
has the largest depth and is thus the furthest in the background.

In between those, this method suggests using a median algo-
rithm, where samples close to the median sample depth are as-
signed a weight of 1. It is to note that this cannot be the true median,
the mean between the two median values when an even number of

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

B. M. Magnussen / Depth Aware Multi-Sample Anti-Aliasing for Deferred Rendering Pipelines

Figure 7: Closeup of section III and section IV from Figure 3. The
top image set shows the front-first algorithm, the center image set
shows the median algorithm and the bottom image set shows the
back-first algorithm.

samples is available. Instead, it must be one of these two sample
depths. It is not possible to use the mean instead of the median, as
for a case with some samples with a high depth and some samples
with a low depth, the mean would result in no sample being close,
and all samples having a weight of 0, violating the third condition.

Figure 7 shows the result of applying the different algorithms
introduced. As front-first will fill a pixel with the sample with the
lowest depth, even if it just takes up one sample in the fragment,
the foreground of images will appear up to one pixel thicker. This
can be observed in the topmost images, where the antenna appears
slightly thicker, and the yellow detail is almost completely obscured
by the grey foreground. The opposite, back-first, will prioritize the
sample with the highest depth, causing the foreground of images to
appear up to a pixel thinner. In the lowermost images, the antenna
appears noticeably thinner, and the yellow detail is almost com-
pletely visible behind the grey foreground. Median neither overly
prioritizes foreground nor background, and thus results in a bal-
anced look closest to the actual model dimensions. There was no
significant performance cost for calculating the median of eight
samples per fragment in the resolve shader. For this reason, the
median algorithm is suggested for use with the proposed method.

5. Conclusion

In conclusion, this article proposes a method to perform multi-
sample anti-aliasing for rendering pipelines using deferred shad-
ing. The proposed method is capable of reducing lighting artifacts
from subpixel geometry, as seen in Figure 8, while avoiding arti-
facts caused by traditionally resolving multi-sampled g-buffers.

In addition, the proposed method is easy to retrofit into existing
pipelines, as changes are neither required for the existing model
rendering shader nor required for the deferred lighting shader. Fur-
thermore, as lighting is still performed per fragment and not per
sample, the proposed method is capable of avoiding the additional

Figure 8: Closeup of section I from Figure 1. The left image shows
the previous pipeline without the proposed method (including post-
process FXAA), the right image shows the proposed method.

computational cost seen with previous solutions based on calculat-
ing lighting for multi-sampled g-buffers per sample.

References

[CML11] CHAJDAS M. G., MCGUIRE M., LUEBKE D.: Subpixel re-
construction antialiasing for deferred shading. In Symposium on In-
teractive 3D Graphics and Games (New York, NY, USA, 2011), I3D
’11, Association for Computing Machinery, p. 15–22 PAGE7. doi:
10.1145/1944745.1944748. 2

[Fat] FATE OF THE GALAXY:. Accessed 14 May 2023. URL:
https://www.hard-light.net/forums/index.php?
board=143.0. 1

[Fre] FREESPACE UPGRADE PROJECT:. Accessed 14 May 2023. URL:
https://www.hard-light.net/forums/index.php?
board=120.0. 3

[Fre23] FREESPACE 2 SOURCE CODE PROJECT:, 2002–2023. Accessed
14 May 2023. URL: https://github.com/scp-fs2open/
fs2open.github.com. 1, 2, 3

[FT20] FRIDVALSZKY A., TÓTH B.: Multisample Anti-aliasing in De-
ferred Rendering. In Eurographics 2020 - Short Papers (2020), Wilkie
A., Banterle F., (Eds.), The Eurographics Association. doi:10.2312/
egs.20201008. 3

[Har14] HARRIS P.: The mali gpu: An abstract machine, part
2 - tile-based rendering, 2 2014. Accessed 25 July 2023.
URL: https://community.arm.com/arm-community-
blogs/b/graphics-gaming-and-vr-blog/posts/the-
mali-gpu-an-abstract-machine-part-2---tile-
based-rendering. 4

[HH04] HARGREAVES S., HARRIS M.: Deferred shading, 2004.
Accessed 12 May 2023. URL: http://download.nvidia.com/
developer/presentations/2004/6800_Leagues/6800_
Leagues_Deferred_Shading.pdf. 2

[JESG12] JIMENEZ J., ECHEVARRIA J. I., SOUSA T., GUTIERREZ D.:
Smaa: Enhanced subpixel morphological antialiasing. Comput. Graph.
Forum 31, 2pt1 (may 2012), 355–364. doi:10.1111/j.1467-
8659.2012.03014.x. 2

[Lot09] LOTTES T.: FXAA, 2 2009. Accessed 12 May 2023. URL:
https://developer.download.nvidia.com/assets/
gamedev/files/sdk/11/FXAA_WhitePaper.pdf. 2

[MIGMM17] MOON B., IGLESIAS-GUITIAN J. A., MCDONAGH S.,
MITCHELL K.: Noise reduction on g-buffers for monte carlo filtering.
Computer Graphics Forum 36, 8 (2017), 600–612. doi:10.1111/
cgf.13155. 3

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://doi.org/10.1145/1944745.1944748
https://doi.org/10.1145/1944745.1944748
https://www.hard-light.net/forums/index.php?board=143.0
https://www.hard-light.net/forums/index.php?board=143.0
https://www.hard-light.net/forums/index.php?board=120.0
https://www.hard-light.net/forums/index.php?board=120.0
https://github.com/scp-fs2open/fs2open.github.com
https://github.com/scp-fs2open/fs2open.github.com
https://doi.org/10.2312/egs.20201008
https://doi.org/10.2312/egs.20201008
https://community.arm.com/arm-community-blogs/b/graphics-gaming-and-vr-blog/posts/the-mali-gpu-an-abstract-machine-part-2---tile-based-rendering
https://community.arm.com/arm-community-blogs/b/graphics-gaming-and-vr-blog/posts/the-mali-gpu-an-abstract-machine-part-2---tile-based-rendering
https://community.arm.com/arm-community-blogs/b/graphics-gaming-and-vr-blog/posts/the-mali-gpu-an-abstract-machine-part-2---tile-based-rendering
https://community.arm.com/arm-community-blogs/b/graphics-gaming-and-vr-blog/posts/the-mali-gpu-an-abstract-machine-part-2---tile-based-rendering
http://download.nvidia.com/developer/presentations/2004/6800_Leagues/6800_Leagues_Deferred_Shading.pdf
http://download.nvidia.com/developer/presentations/2004/6800_Leagues/6800_Leagues_Deferred_Shading.pdf
http://download.nvidia.com/developer/presentations/2004/6800_Leagues/6800_Leagues_Deferred_Shading.pdf
https://doi.org/10.1111/j.1467-8659.2012.03014.x
https://doi.org/10.1111/j.1467-8659.2012.03014.x
https://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
https://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
https://doi.org/10.1111/cgf.13155
https://doi.org/10.1111/cgf.13155

B. M. Magnussen / Depth Aware Multi-Sample Anti-Aliasing for Deferred Rendering Pipelines

[NVI] NVIDIA CORP.: Gameworks library - graphics and compute
samples - antialiased deferred rendering. Rev. 1.0.220830, Accessed 12
May 2023. URL: https://docs.nvidia.com/gameworks/
content/gameworkslibrary/graphicssamples/d3d_
samples/antialiaseddeferredrendering.htm. 2, 3

[Pet12] PETTINEO M.: Experimenting with reconstruction fil-
ters for msaa resolve, 10 2012. Accessed 10 May 2023.
URL: https://therealmjp.github.io/posts/msaa-
resolve-filters/. 3

[PF05] PHARR M., FERNANDO R.: Deferred shading in S.T.A.L.K.E.R.
In GPU Gems 2: Programming Techniques for High-Performance
Graphics and General-Purpose Computation (Gpu Gems). Addison-
Wesley Professional, 2005, ch. 9. 2

[PMH02] PETERSON J., MULLIS R., HUNTER G.: Multi-sample
method and system for rendering antialiased images, 10 2002. US Patent
Application US09/823,935. 2

[Thi09] THIBIEROZ N.: Deferred shading with multisampling anti-
aliasing in directx 10. In ShaderX7: Advanced Rendering Techniques.
Charles River Media, 2009, ch. 2.8. 2

[Vol99] VOLITION, INC.: Freespace 2, 1999. source code published on
25 April 2002. 2

[YLS20] YANG L., LIU S., SALVI M.: A Survey of Temporal Antialias-
ing Techniques. Computer Graphics Forum (2020). doi:10.1111/
cgf.14018. 2

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://docs.nvidia.com/gameworks/content/gameworkslibrary/graphicssamples/d3d_samples/antialiaseddeferredrendering.htm
https://docs.nvidia.com/gameworks/content/gameworkslibrary/graphicssamples/d3d_samples/antialiaseddeferredrendering.htm
https://docs.nvidia.com/gameworks/content/gameworkslibrary/graphicssamples/d3d_samples/antialiaseddeferredrendering.htm
https://therealmjp.github.io/posts/msaa-resolve-filters/
https://therealmjp.github.io/posts/msaa-resolve-filters/
https://doi.org/10.1111/cgf.14018
https://doi.org/10.1111/cgf.14018

